How to Maintain High Producing Efficiency in Sucker Rod Lift Operations

Lynn Rowlan

What is High Efficiency?

Electrical Efficiency

- Total System Efficiency Should be greater than 50%
- Surface Efficiency should be greater than 80%

Mechanical Efficiency

Pump, Rods, Pumping Unit Size and Balance

Reservoir Producing Rate Efficiency

Should be greater than 95%

High Efficiency?

High <u>electrical</u> efficiency, <u>mechanical</u> efficiency and <u>reservoir producing rate</u> efficiency requires:

- a) Measurement of motor power, dynamometer data, the liquid level depth with casing pressure and a representative well test.
- b) (Electrical efficiency, mechanical efficiency and reservoir producing rate efficiency) All three must be high for the well to be produced at optimum conditions.

What Should be Known in Order to Analyze a Well?

- Recent and/or Representative Well Test
- Producing BHP & Static BHP
- ♦ Dynamometer Data
- ♦ Pump Capacity (or, Pump Card)
- ♦ Energy Use
- ♦ Wellbore Description
- Artificial Lift System Description
- ♦ Fluid Properties
- ♦ Past History

Analyze Well To Determine Efficiencies:

- 1. Analyzes the well's inflow performance to determine if additional production is available. (>95% Eff.)
- 2. Determines the overall electrical efficiency.
- 3. Analyzes the efficiency of the pump.
- 4. Analyzes the efficiency of the down-hole gas separator.
- 5. Analyzes the mechanical loading of rods and pumping unit.
- 6. Analyzes performance of prime mover.

Well Flow Mechanism

Determine Well's Potential using Inflow Performance

Vogel IPR Relationship

Electric Power (kW) and Current (Amps) Input to the Motor over the time of One Pump Stroke

Efficiency

- **1. Power Input into Sucker Rod Lift System**
 - a) System Does Work to Add Energy to Fluids
 - b) Fluids then flow to the Surface
- 2. Discuss Surface & System efficiency
- 3. Use Fluid Level, Dynamometer, and Power Surveys to Determine Efficiency
- 4. Low Efficiency Used to Identify Problems
- 5. How to maintain a high producing efficiency in sucker rod lift operations

Net Lift ~ System Efficiency Equation

Measure Motor Input = 13.9 kW

Acquire:

- RMS (thermal) motor current
- Average (real) motor current
- kW during a pump stroke cycle.

Pump Intake Pressure = 730.7 Psig 133 BOPD Tubing Fluid Gradient = 0.335 psi/ft 241 BWPD

System Efficiency Calculation

Theoretical amount of work required to lift the liquid from the intake pressure at the pump to the surface divided by the energy supplied to the motor.

Measure:

Pump Intake Pressure from Acoustic Liquid Level

Net Lift = P Depth–PIP/ .433xSG

= 5059 - 730/0.335 = <u>2880 ft</u>

Fluid Volumes and Properties

Motor Input Power Measurement

55% System Efficiency

Overlay Dyna Cards 7	orque Rod Loading	Load/Current	Power Torque	Power Result	ilts Ana 🔸 🕨
Monthly Operation Costs (30 Days	per Month): Re	commended Minimum	NEMA D Motor 24	4.8	кw
Run Time 24	hr/day		Bated HP	4 76	К\W
Cost With Gen. Credit 349.96	\$				
Cost No Gen. Credit 453.69	\$	= Bated Full	oad AMPS 75		
Demand Cost 176.96	\$	Th	ermal AMPS 45.1		
Oil Prod. Cost 15.8	с/ы		-		
Liquid Prod. Cost 5.6	c/bbl		Gross Input 18.0	KW	
Oil Production 133	BBL/D		Net Input 13.9	KW	
Water Production 241	BBL/D		Demand 22.1	KW	
			Average 20.1	KVA	
80.00 - Power	(KM) — — — Currer	nt (Amp)	 Averao	e Power	
	~~.			129	KW/
60.00- 		SA No	Generation Credit Generation Credit	10.0	ĸw
40.00	$\sim 1 2^{1}$	A VVVV		10.0	18.97
		mm 1	Avg. Power Factor	56.4	%
Λ			System Efficiency	55.0	%
0	·····/····/·				
-20.00-	η. /				
40.00	\sim			1	1
		<u> </u>	oke 6 💌	? < Pgl	Jp Pg Dwn >

Why is Efficiency a Useful Benchmark?

Measure of work input (power requirements) relative to useful output (liquid production). Directly related to operating costs Relatively easy to measure ♦ Generally accepted guidelines

Efficiency

System Efficiency should be > 50%
Surface Efficiency should be > 80%

Losses ~ System Efficiency

 η BEAM, system= η surface η motor η unit η rods η tubing friction η surface pressure

Motor Performance Data – Efficiency vs. Output Hp Comparison of NEMA D Motors

60 Hp NEMA D Motor (Surface Efficiency) <u>Motor Performance Data – Efficiency vs. Output Hp</u>

Motor Performance – NEMA D Motors Minimum Surface Efficiency

Motor HP - NEMA D	5	7.5	10	15	20	25	30	40	50	60
Motor Efficiency (30%-80%) Load	78	80	84	85	88	91	88	91	90	86
Minimum Surface Efficiency	70	72	76	77	79	82	79	82	81	77

<u>Surface Efficiency</u> measured over one revolution of the crank is an excellent indicator of the operating performance of the surface equipment.

<u>Surface Efficiency</u> includes losses per crank revolution in wirelines, structural bearings, transmissions, Vbelts, and the electric motor.

Example of Low Surface Efficiency

Bad Tail Bearing Resulted in Low Surface Efficiency of <u>66.5%</u>

Surface Efficiency of <u>83.0%</u> After Repair of Bad Tail Bearing

1005	PPRL	16384		PPUMPL	4630	
	MPRL	5917		MPUMPL	-1413	
Calc	ulated F	luid Load	5200		Ь	
Po	lished Ro	od Power	15.9		HP	
olished	d Rod / N	dotor Eff.	83.0		%	
S	trokes P	er Minute	7.02			
	Pump	Card HP	9.8		HP	
	Pump / N	dotor Eff.	51.1		%	

Motor Power and Electrical Analysis

Oil Lifting Cost, 8000 ft net lift, \$ 0.05/kwh Water Disposal Cost, \$ 0.07/Bbl

Use Both Producing Fluid Level Survey and Dynamometer Analysis to Answers the Following Questions:

- 1. Is the well being produced at its maximum production rate?
- 2. Does a fluid column exist above the pump intake?
- 3. Is the pump completely filled with liquid?
- 4. Is *low efficiency* caused by incomplete pump fillage due to over-pumping the well or due to gas interference?

Acoustic and Power Surveys Show System Efficiency Less Than 35%

Drawdown	Low Producing BHP or Low Fluid Level	Low Producing BHP or Low Fluid Level	High Producing BHP or High Fluid Level
Dynamometer	Pump Full	Low Pump Fillage	Low Pump Fillage
Your Job	Low Priority Study Surface Efficiency <i>Tubing Leak ?</i>	Potential to Improve Study Control Run Time	High Priority Study Gas Interference

Acoustic and Power Surveys Show System Efficiency Greater Than 35%

Low	High	High
Producing	Producing	Producing
BHP or Low	BHP or High	BHP or High
Fluid Level	Fluid Level	Fluid Level
Pump Full	Pump Full	Low Pump Fillage
Well OK	Potential to	High Priority
	Improve Study	Study Gas
	Pump Capacity	Interference
	Low Producing BHP or Low Fluid Level Pump Full Well OK	LowHighProducingProducingBHP or LowBHP or HighFluid LevelFluid LevelPump FullPump FullWell OKPotential toImprove StudyPump Capacity

Low Efficiencies of Sucker Rod Lifted Wells Are Often Caused by Partial Pump Fillage

More efficient operations and lower electrical power usage will result if wells are operated with a <u>pump</u> <u>filled with liquid</u>.

 Full pump fillage also requires an <u>efficient</u> <u>downhole gas separation</u> that results in a full pump if sufficient liquid is present to fill the pump.

Full pump fillage generally requires <u>controlling the</u> <u>run time</u> of the pumping unit to match the pump capacity to the maximum well inflow rate.

HOW TO MINIMIZE ELECTRICITY USAGE?

Maintain a high pump volumetric efficiency:

- Match pumping unit capacity with wellbore inflow.
- Pump a Full Stroke of liquid by controlling run time with a POC or Timer
- Eliminate Gas interference.

When System Efficiency is low, find and fix problem.

Mechanically/Electrically balance pumping unit.

Properly size pumping unit, rods and pump to match well loads.

On severely over-sized motors where surface efficiency falls below 50%, reduce motor size. **Periodically Monitor Well's Operations To Maintain Efficient Operations**

- **1.** Check pump for proper operation
- 2. Produce all available liquid from the Wellbore
- 3. Operate well with high volumetric pump efficiency
- 4. Use POC or TIMER to reduce run time if pump capacity exceeds production rate

High Efficiency Reduces Equipment Operating Costs

- 1. Uniform loading of pump and pumping unit reduces maintenance.
- 2. Operating the pumping unit a portion of the time subjects the unit to less wear and tear.
- 3. Fluid pound should be minimized.
- 4. Reduced shock loading results in decreased rod buckling, pump wear, tubing wear, excessive rod loading changes and pumping unit vibration.
- 5. Reduction of shock loading reduces maintenance costs.

Maintaining High Efficiency in Sucker Rod Lift Operations Results in:

- **1. Reduced Electrical Costs**
- 2. Reduced Mechanical Operating Expense.
- 3. Increased in Oil and Gas Production.
- 4. Longer Run Times Before Failure.

